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Abstract

We study the impact of a rigid sphere on a circular elastic plate whose thickness is not small with respect to its

diameter, so that Kirchhoff�s theory cannot be applied. For plate-like bodies of this kind it is convenient to apply a

theory proposed by Levinson [J. Elasticity 7 (1985) 283], which is a compromise between Kirchhoff�s solution and that

obtained by the integration of Lam�e�s equation of three-dimensional elasticity. The pressure distribution and the extent

of the (circular) area of contact of the sphere on the plate-like body is mathematically described by Hertz�s theory. By
combining these two theories in a dynamical framework, we derive a non-linear ordinary differential equation able to

describe the normal slow impact of a rigid sphere against an elastic plate-like body.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we analyze the normal impact problem of a rigid sphere against a circular elastic plate. We

assume that the radius of the sphere and the thickness of the plate are comparable and they are both not

small with respect to the diameter of the plate. As a consequence, neither Kirchhoff�s theory of thin plates

nor Hertz�s theory of the elastic semi-space can be applied.
The problem is approached by searching a suitable solution of the equations of the three-dimensional

theory of elasticity in a cylindrical domain (Villaggio, 1997). To this end, we exploit the work of Levinson

(1985) which proposed a static theory that is a compromise between Kirchhoff�s plate solution and that

obtained by the integration of Lam�e�s equation of three-dimensional elasticity. In this paper we propose an

extension of the Levinson�s displacement field in the dynamical case.

In Section 2 we consider a circular isotropic elastic plate with axisymmetric load conditions and write the

elastodynamic equations. We adopt a semi-inverse method by assuming detailed load conditions on the

plate faces and satisfying boundary conditions only partially on the mantle. The remaining boundary
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conditions may be considered as compatibility conditions on the data for the applicability of the model. We

propose a solving technique based on the method of the separation of the variables and the use of the

Fourier–Bessel expansion.

In Section 3 we assign the detailed distribution of the pressure on the upper face of the plate and the
extent of the (circular) area of contact by extending, to the dynamical case, Hertz�s theory (Johnson, 1985)

and, in Section 4, we explicitly obtain the impact law.

In Section 5 we study the equation of the motion for the rigid sphere impinging on the thick plate

by assuming that the period of duration of the impact is much larger than the time employed by the

elastic waves in traversing the plate after the first impact (Villaggio, 1996). According to this assumption,

we adopt the static contact law and we get a non-linear second order ordinary differential equation for

the dynamical value of the indentation. A perturbative technique allows us to get the numerical values of

the contact period, the maximum contact force and the maximum indentation in terms of the plate
thickness.

Finally, a numerical investigation is performed in order to valuate the influence of the thickness-to-side

ratio on the impact law and on the analysis of the motion during a slow impact.
2. Axisymmetric Levinson-type problems

Let a circular plate-like body of thickness 2h and radius b referred to a system of cylindrical coordinates

ðr; h; zÞ such that its origin 0 is placed at the center of the middle plane. By considering axisymmetric load

conditions in a statical equilibrium problem, Levinson assumed the following expression for the dis-

placement field
uðr; zÞ ¼ �gðzÞ d

dr
W ðrÞ;

wðr; zÞ ¼ f ðzÞW ðrÞ:
ð2:1Þ
The function W ðrÞ is the deflection of the middle surface (so that f ð0Þ ¼ 1) and gðzÞ and f ðzÞ are func-
tions determining the variations in the displacements through the thickness of the plate (Levinson,

1985).

In this paper, we consider a dynamical problem with axisymmetric load conditions and assume that the

displacement field (2.1) may be written as follows
uðr; z; tÞ ¼ �gðzÞ d

dr
W ðrÞeixt;

wðr; z; tÞ ¼ f ðzÞW ðrÞeixt:
ð2:2Þ
The boundary condition over the mantle r ¼ b is
wðb; z; tÞ ¼ 0; ð2:3Þ
while, on the upper and lower faces, are
rrzðr;�h; tÞ ¼ 0;

rzzðr;�h; tÞ ¼ 0;

rzzðr;þh; tÞ ¼ pðr; tÞ:
ð2:4Þ
The function pðr; tÞ is the load on the upper face of the plate whose form will be detailed in the next
section. We remark that the displacement boundary condition (2.3) is partly consistent with the notion of

simple supported edge of classical bending theory.
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By considering null body force, the linear elastodynamic equations for an isotropic material are
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where q is the density and k and l the Lam�e moduli.

By substituting the displacement field (2.2) in Eqs. (2.5) and (2.6), we get the following equations
ðlg00 � ðkþ lÞf 0 � 1

r2
ðkþ 2lÞg þ qx2gÞW 0 þ ðkþ 2lÞ 1

r
W 00

�
þ W 000

�
g ¼ 0; ð2:7Þ

ððkþ 2lÞf 00 þ qx2f ÞW þ ðlf � ðkþ lÞg0Þ 1

r
W 0

�
þ W 00

�
¼ 0: ð2:8Þ
The differential equation (2.8) can be transformed into the form
DW
W

¼ ðkþ 2lÞf 00 þ qx2f
�lf þ ðkþ lÞg0 ;
which allows variable separation; we write the left side as follows
DW þ gW ¼ 0:
Since the boundary condition (2.3) implies W ðbÞ ¼ 0, a classical result ensures us that g is non-negative (see

p. 298 of Courant and Hilbert (1953)). Therefore, by putting g ¼ k2, we get
DW þ k2W ¼ 0; ð2:9Þ

ðkþ 2lÞf 00 þ qx2f þ k2ð�lf þ ðkþ lÞg0Þ ¼ 0: ð2:10Þ
The solution of Eq. (2.9) is
W ðrÞ ¼ BJ0ðkrÞ þ DY0ðkrÞ;
where J0ðkrÞ and Y0ðkrÞ are the 0-order Bessel functions of the first and second kind respectively. The

coefficient D is zero since the function Y0ðkrÞ is unbounded in r ¼ 0, and hence function Y0ðkrÞ must be

disregarded. Further, the requirement wðb; z; tÞ ¼ 0 implies J0ðkbÞ ¼ 0 which is satisfied only if
WjðrÞ ¼ J0ð/jrÞ;
where /j ¼ Zj=b with Zj the j–th positive zero of J0.
Now we substitute this relation in (2.7) and differentiate it with respect to z. By using the expression of

g0ðzÞ obtained by Eq. (2.10), we obtain
ðkþ 2lÞlf 0000

j � 2k2j lðk
h

þ 2lÞ � qx2ðkþ 3lÞ
i
f 00
j þ k4j lðk

h
þ 2lÞ � qx2ðkþ 3lÞk2j þ q2x4

i
fj ¼ 0;

ð2:11Þ
whose solution is
fjðzÞ ¼ CðjÞ
1 coshðajzÞ þ CðjÞ

2 sinhðajzÞ þ CðjÞ
3 coshðbjzÞ þ CðjÞ

4 sinhðbjzÞ; ð2:12Þ
where we use the index j to distinguish different solutions corresponding to different values of kj.
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The coefficients CðjÞ
1 , CðjÞ

2 , CðjÞ
3 and CðjÞ

4 (which depend on x), are uniquely determined by the conditions

on the faces of the body (2.4); the coefficients aj and bj are
1 F
aj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2
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l

s
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Hence the functions gjðzÞ, obtained from Eqs. (2.10) and (2.12), take the form
gjðzÞ ¼ � aj
/2

j

CðjÞ
1 sinhðajzÞ

�
þ CðjÞ

2 coshðajzÞ
�
� 1

bj
CðjÞ

3 sinhðbjzÞ
�

þ CðjÞ
4 coshðbjzÞ

�
: ð2:13Þ
The displacement field is obtained by considering the sum on all values of j, so obtaining the following

expansions:
uðr; z; tÞ ¼ �
X1
j¼1

aj
/j
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� 
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wðr; z; tÞ ¼
X1
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�
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2 sinhðajzÞ þ CðjÞ
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�
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ð2:14Þ
The series for u and w are respectively a Dini and a Fourier–Bessel expansions. We assume that the

displacement field is C2 for all r 2 ½0; b�. The theorems stating that this assumption yields the convergence
and allows the term by term differentiability of these series can be found in Watson�s book(1966) or ob-
tained by a straightforward development of the results therein presented. 1
3. Evaluation of the coefficients

We assume the following normal periodic Hertzian pressure acting on the upper face of the plate
pðr; tÞ ¼ pðrÞeixt ¼ 4l
pð1� mÞR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
eixt; ð3:1Þ
where
a ¼ 3Rð2lþ kÞ
16lðlþ kÞ

� �1
3

P
1
3

is the contact area radius, R the radius of the rigid sphere and P the resultant pressure.

We observe that the periodic pressure assumption (3.1) may be also regarded as a single Fourier
component of an impulsive impact load (of Dirac-like form), since the frequency in (3.1) is arbitrary.

The pressure pðrÞ is written with a Fourier–Bessel expansion on the interval ð0; bÞ
pðrÞ ¼
X1
j¼1

AjJ0ð/jrÞ; ð3:2Þ
or details see the topics from proposition 18.24 up to proposition 18.4 in Watson (1966).
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where the coefficients Aj are given by the formula
Aj ¼
2
R a
0
rpðrÞJ0ð/jrÞdr
b2ðJ1ðb/jÞÞ

2
:

For the pressure distribution (3.1) the coefficients are
Aj ¼ 3
sin cP

1
3/j

� �
� c/jP

1
3 cos cP

1
3/j

� �
pb2c3/3

j ðJ1ðb/jÞÞ
2

ð3:3Þ
with
c � 3Rð2lþ kÞ
16lðlþ kÞ

� �1
3

:

For any details concerning the convergence of the expansion (3.2) we refer to p. 37 of Sneddon (1966).

The boundary conditions on the stress components (2.4) yield the following linear system
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which gives the coefficients
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The displacement field is obtained by substituting the coefficients (3.5) in (2.14) and the stress compo-

nents explicitly written, become
rðjÞ
rr ¼ Aj
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We notice that rrrðb; z; tÞ and Mr, the bending moment on the edge of the plate, are both not vanishing.

This result is not consistent with the notion of simple support imposed in classical two-dimensional theory

of plates. However, Levinson�s theory too does not require that we prescribe the stress components

rrrðb; z; tÞ, rrzðb; z; tÞ to find the solution; actually, the main assumptions (2.2) are, on one hand, restrictions

on the displacement field, and, on the other hand, compatibility conditions on the data (Podio Guidugli

et al., 1999).
4. Impact law in thick plate

In the circular thick plate the impact law is obtained by using Eq. (2.14b) for z ¼ þh; r ¼ 0 and the

coefficients CðjÞ
a ; a ¼ 1; . . . ; 4 given by Eq. (3.5) which where, in turn, obtained by taking into account the

boundary conditions (2.4). According to Levinson�s theory, the indentation is
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Let us remark that, in the statical case, the indentation is
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It is easy to check that limx!0 KD
j ¼ KS

j ; therefore, for low frequencies, the impact law is the same in both

static and the dynamic cases. We notice that the existence of a periodic load may give rise to the resonance

of the plate-like body. In fact, we find the frequency resonance values by maximizing the expression of the

displacement in the first contact point (4.1).
It is possible to verify that the lower frequency value maximizing (4.1) furnishes the same free frequency

value obtained by the homogeneous system associated with (3.4).

Finally, we observe that the accurate knowledge of the localized maximum stresses in the contact region

and of the resonance peaks is useful for finding the optimal thickness of a plate in order to avoid undesired

resonance phenomena of the plate without compromising the material resistance.
5. Equation of motion

In this section we study the problem of the frictionless normal low velocity impact of a rigid sphere

against an elastic plate-like body; by assuming that the period of duration of the impact is much larger than

the time employed by the elastic waves in traversing the plate after the first impact, we adopt the static

contact law (4.2).

The equation of motion during the contact takes is
M€dðtÞ þ P ðtÞ ¼ 0; ð5:1Þ

where M ¼ 4=3q0pR

3 is the mass of the sphere and q0 its material density; dðtÞ is the instantaneous

indentation and P ðtÞ the instantaneous resultant pressure.
The contact law is rewritten in the following form
d ¼
X1
k¼2

ckP
2k�1
3 ð5:2Þ
with
ck ¼ ð�1Þk ð2k � 2Þ
ð2k � 1Þ! c

2k�1
X1
j¼1

/2k�1
j KS

j :
The expression (5.2) may be inverted, for 0 < d < b2=R, as follows
P ¼
X1
k¼2

nkd
2k�1
3 ; ð5:3Þ
where the coefficients nk of the inverse expansion can be obtained through a straightforward extension of

the technique presented in Morse and Feshbach (1953); the first three terms are
n2 ¼
1

c2
; n3 ¼ � c3

c
8
3

2

; n4 ¼ � 1

3

3c4c2 � 5c23

c
13
3

2

; . . .
After substitution of (5.3) in the equation of the motion (5.1), we obtain the non-linear ordinary dif-

ferential equation
€dðtÞ þ 1

M

X1
k¼2

nkdðtÞ
2k�1
3 ¼ 0; ð5:4Þ
accompanied by the initial conditions
dð0Þ ¼ 0 and _dð0Þ ¼ v0;
where v0 is the velocity of the sphere before the impact.
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Eq. (5.4) may be reduced to the following first-order differential equation for 0 < t < tc, (2tc is the

contact period)
_dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3

s
: ð5:5Þ
We linearize Eq. (5.4) and denote its solution with
d0ðtÞ ¼ v0

ffiffiffiffiffi
M
n2

s
sin

ffiffiffiffiffi
n2
M

r
t

 !
:

Now, we look for a solution of (5.5) as
dðtÞ ¼ d0ðtÞ þ gðtÞ;
where gðtÞ denotes the first correction term.

A straightforward calculation shows that gðtÞ satisfies the following first order linear ordinary differential
equation
_gðtÞ þ F ðtÞgðtÞ þ GðtÞ ¼ 0; with _gð0Þ ¼ 0; ð5:6Þ
where we have set
F ðtÞ ¼
d0ðtÞ n2 þ n3d0ðtÞ

2
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M
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8
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:

The solution of (5.6) is
gðtÞ ¼
�
�
Z

GðtÞe
R

F ðtÞdt
dt þ C

�
e
�
R

F ðtÞdt
; ð5:7Þ
where C is obtained by the condition gð0Þ ¼ 0.

We observe that in Eq. (5.6) the second order terms in gðtÞ have been neglected. Actually, successive
terms in the expansion furnish not significant increment in the valuation of the non-linear contribute; with

analogous calculation one can get also the successive, higher order correction terms.

The numerical solutions of the equation of motion carry out the maximum indentation dc, the contact

period 2tc and the maximum contact force Fc.
6. Numerical results

In this section we consider a rigid sphere of radius R ¼ 0:01270 m, an isotropic circular plate of radius

b ¼ 0:038 m and elastic properties k ¼ 0:36 GPa and l ¼ 0:43 GPa.

By using the analytical solutions (4.2), in Fig. 1 we show the impact law in the case of low frequencies for
different ratios h=b of the plate-like body (with a 100 terms expansion). As expected, there is an agreement

with the Hertz�s contact law only for high values of the ratio h=b.
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In Fig. 2 we show the behavior of the indentation with respect to the frequency; we observe that the

indentation (4.1) increases slowly with the increasing of the frequency when we consider values not near the
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resonance peaks; moreover, for a prescribed frequency value, an increase of the thickness produces a de-

crease of the indentation.

We notice that the results obtained in Section 4 give a method to optimize the thickness of a plate by

taking into account the working frequency and the properties of the material. First of all we observe that a
numerical analysis shows that only rrr depends effectively on the ratio h=b. In Fig. 3, we plot the ‘‘maxi-

mum’’ value of the radial stress with respect to h=b, obtained by using expression (3.6a) for r ¼ 0; z ¼ h=2
and for x the first resonance value up to one half of the amplitude of the corresponding resonance peak.

For different ratios h=b, the maximum radial stresses decreases with the increase of the thickness, while the

resonance frequencies, obtained maximizing the (4.1), increase with the thickness. Thus, an optimization

criteria may be so formulated: if we design a plate with prescribed elastic moduli and assigned working

frequencies, the points of the curve of Fig. 3 yield the optimal thickness before that resonance peak and

material failures arise.
Finally, we study a numerical solution of the motion equation (5.4) obtained by using the perturbative

method presented in Section 5. We assume that the sphere is made of iron with density q0 ¼ 8000 kg/mc,

that the initial velocity v0 ¼ 1 m/s and the thickness-to plate radius ratio h=b ¼ 0:10. We remark that only

the first correction term obtained by solution (5.7) is considered, since successive terms give not significant

contribution to the solution.

The numerical evaluation gives the following results: the maximum indentation is dc ¼ 3:6� 10�4 m

(with d0 ¼ 3:668� 10�4 m and g ¼ �3:5� 10�6 m), the duration of the impact is 2tc ¼ 1:15� 10�3 s and the

maximum contact force is Fc ¼ 191 N. Further, we compare this results with the numerical values derived
by the classic Hertz�s theory: (dhertzc ¼ 1:9� 10�4 m, 2thertzc ¼ 5:6� 10�4 s, F hertz

c ¼ 448 N). In Fig. 4 we show

how the time of collision decreases with the increasing of the thickness-to plate radius ratio; analogously,

under the same assumption, the maximum indentation dc decreases and the maximum contact force Fc
increases. All these values approaches the Hertz�s values when the plate thickness increases.
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7. Conclusions

A three-dimensional axisymmetrical solution for the normal impact problem of a rigid sphere impinging

against an elastic plate-like body was found in order to give an impact law taking into account the thickness

of the plate. It was found how the impact law deviates significantly from the Hertz�s contact law in thin

plate.

The equation of the motion is solved under the assumption that the static contact law applies and its

solution gives the duration of the impact, the maximum indentation and pressure. Comparisons with the

Hertz�s theory numerical results reveal that the deformability of plate leads to a reduction of the duration of

the impact in thin plates.
We remark that the solution here presented is valid only when ða=2h < 1Þ (Chen and Frederick, 1993); if

this assumption is not satisfied, the contact pressure distribution deviates significantly from the Hertzian

prediction and this effect can be attributed to the tendency of the plate to wrap around the sphere (Keer and

Miller, 1983).
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